(1)X^2m-3n=X^2m/X^3n(同底数幂除法公式的逆用a^m/a^n=a^m-n)
=(X^m)^2/(X^n)^3(幂的乘方公式的逆用)
=25/9
(2)由已知得:32^n=2^5n=6
2^3m-10n=2^3m/2^10n=(2^m)^3/(2^5n)^2=27/36=3/4
(3)用换元法做:
设A=X^2+Y^2,则原方程转化为:A(A+1)=12
解得:A1=-4 A2=3
又因为X^2+Y^2>0,所以X^2+Y^2=3
(4)k=9
(1)X^2m-3n=X^2m/X^3n(同底数幂除法公式的逆用a^m/a^n=a^m-n)
=(X^m)^2/(X^n)^3(幂的乘方公式的逆用)
=25/9
(2)由已知得:32^n=2^5n=6
2^3m-10n=2^3m/2^10n=(2^m)^3/(2^5n)^2=27/36=3/4
(3)用换元法做:
设A=X^2+Y^2,则原方程转化为:A(A+1)=12
解得:A1=-4 A2=3
又因为X^2+Y^2>0,所以X^2+Y^2=3
(4)k=9