解题思路:纸带法实验中,若纸带匀变速直线运动,测得纸带上的点间距,利用匀变速直线运动的推论,可计算出打出某点时纸带运动的瞬时速度和加速度,从而求出动能.根据功能关系得重力势能减小量等于重力做功的数值.
①从纸带上可以看出0点为打出来的第一个点,速度为0,重物自由下落,初速度为0,所以应该先打出0点,而与重物相连的纸带在下端,应该先打点.所以纸带的左端应与重物相连.
②重力势能减小量△Ep=mgh=9.8×0.1920J=1.88 J.
利用匀变速直线运动的推论:vB=
XAC
tAC=
23.23−15.55
2×0.02×10−2=1.92m/s
EkB=
1
2m
v2B=
1
2×1.922J=1.84J.
③通过计算可知动能的增加量略小于重力势能的减小量,其原因是物体在下落过程中克服摩擦阻力做功.所以可以得出结论:在误差范围内,重物下落过程中机械能守恒
故答案为:(1)左(2)1.88;1.84(3)在误差范围内,重物下落过程中机械能守恒.
点评:
本题考点: 验证机械能守恒定律.
考点点评: 运用运动学公式和动能、重力势能的定义式解决问题是该实验的常规问题.