a1...an=√2^bn
a1...ana(n+1)=√2^b(n+1)
两式相除得:a(n+1)=√2^[b(n+1)-bn]
由此即可看得an>0
且a3=√2^(b3-b2)
即a3=√2^6=8
故a3/a1=8/2=4=q²,得q=2
an=2^n
从而a1...an=2^(1+2+...+n)=2^[n(n+1)/2]=√2^n(n+1)
对比已知条件,得bn=n(n+1)
a1...an=√2^bn
a1...ana(n+1)=√2^b(n+1)
两式相除得:a(n+1)=√2^[b(n+1)-bn]
由此即可看得an>0
且a3=√2^(b3-b2)
即a3=√2^6=8
故a3/a1=8/2=4=q²,得q=2
an=2^n
从而a1...an=2^(1+2+...+n)=2^[n(n+1)/2]=√2^n(n+1)
对比已知条件,得bn=n(n+1)