解题思路:根据等边三角形的性质由△ABC为等边三角形得到∠A=60°,由于AD=AE,根据等边三角形的判定方法得到△ADE是等边三角形;根据△ABC为等边三角形,则∠C=∠B=60°,由DE∥BC得到∠ADE=∠C=∠B=∠AED=60°,然后根据等边三角形的判定方法得到△ADE是等边三角形.
∵△ABC为等边三角形,
∴∠A=60°,
∵AD=AE,
∴△ADE是等边三角形;所以①正确;
∵△ABC为等边三角形,
∴∠C=∠B=60°,
∵DE∥BC,
∴∠ADE=∠C=∠B=∠AED=60°,
∴△ADE是等边三角形,所以②正确.
故选C.
点评:
本题考点: 等边三角形的判定与性质.
考点点评: 本题考查了等边三角形的判定与性质:等边三角形的三条边相等,三个内角都等于60°;有两个内角都等于60°的三角形为等边三角形;顶角为60°的等腰三角形是等边三角形.