AC^2=AB^2-BC^2=13^2-5^2=12^2
1/CD^2=1/BC^2+1/AC^2
=1/25+1/144
=169/(25*144)
CD=5*12/13=60/13
推导:
AB^2=BC^2+AC^2=(BD+AD)^2
=BD^2+DA^2+2BD*DA
CD^2=BC^2-BD^2
CD^2=AC^2-DA^2
BC^2+AC^2=BC^2-CD^2+AC^2-CD^2+2BD*DA
(AB^2+CD^2)^2=(BC^2-CD^2)(AC^2-CD^2)
化简之有:
BC^2*AC^2=CD^2*AC^2+CD^2*BC^2
所以,1/CD^2=1/BC^2+1/AC^2