y=1/2(x^2-6x)+3/2
=1/2(x^2-6x+9-9)+3/2
=1/2(x^2-6x+9)-9/2+3/2
=1/2(x-3)^2-3
所以顶点(3,-3)
y=0,1/2(x-3)^2-3=0
(x-3)^2=6
x-3=±√6
x=3±√6
所以和x轴的交点坐标(3-√6,0)和(3+√6,0)
x^2系数大于0,开口向上
对称轴x=3
所以x3,y随x增大而增大
y=1/2(x^2-6x)+3/2
=1/2(x^2-6x+9-9)+3/2
=1/2(x^2-6x+9)-9/2+3/2
=1/2(x-3)^2-3
所以顶点(3,-3)
y=0,1/2(x-3)^2-3=0
(x-3)^2=6
x-3=±√6
x=3±√6
所以和x轴的交点坐标(3-√6,0)和(3+√6,0)
x^2系数大于0,开口向上
对称轴x=3
所以x3,y随x增大而增大