f(x)=2sinxcosx+2cos^2x
=sin2x+cos2x+1
=√2(√2/2sin2x+√2/2cos2x)+1
=√2sin(2x+π/4)+1
g(x)=f(x+π/8)-1
=√2sin[2(x+π/8)+π/4]
=√2sin(2x+π/2)
=√2cos2x
∵g(x)
f(x)=2sinxcosx+2cos^2x
=sin2x+cos2x+1
=√2(√2/2sin2x+√2/2cos2x)+1
=√2sin(2x+π/4)+1
g(x)=f(x+π/8)-1
=√2sin[2(x+π/8)+π/4]
=√2sin(2x+π/2)
=√2cos2x
∵g(x)