√k-√k-1-√k+1+√k
(√k-1+√k+1)^2
=k-1+k+1+2√(k-1)(k+1)
=2k+2√(k-1)(k+1)
=2k+2√(k^2-1)
(2√k)^2=4k=2k+2k=2k+2√k^2
所以2√k>√k-1+√k+1
即√k-√k-1>√k+1-√k
√k-√k-1-√k+1+√k
(√k-1+√k+1)^2
=k-1+k+1+2√(k-1)(k+1)
=2k+2√(k-1)(k+1)
=2k+2√(k^2-1)
(2√k)^2=4k=2k+2k=2k+2√k^2
所以2√k>√k-1+√k+1
即√k-√k-1>√k+1-√k