sinA+cosA=1/3
(sinA+cosA)²=1/3²
1+2sinAcosA=1/9
2sinAcosA=-8/9
从而
(sinA-cosA)²=1-2sinAcosA=1-(-8/9)=17/9
sinA-cosA=±√17/3
于是
-cos(3π-A)-sin(A-π)/sin(π/2+A)+sin(-A)
=-(-cosA)-(-sinA)/cosA+(-sinA)
=cosA+sinA/cosA-sinA
=1/3 ÷(±√17/3)
=±1/√17
=±√17 /17
sinA+cosA=1/3
(sinA+cosA)²=1/3²
1+2sinAcosA=1/9
2sinAcosA=-8/9
从而
(sinA-cosA)²=1-2sinAcosA=1-(-8/9)=17/9
sinA-cosA=±√17/3
于是
-cos(3π-A)-sin(A-π)/sin(π/2+A)+sin(-A)
=-(-cosA)-(-sinA)/cosA+(-sinA)
=cosA+sinA/cosA-sinA
=1/3 ÷(±√17/3)
=±1/√17
=±√17 /17