解题思路:利用同角的余角相等求出∠ABD=∠CAE,再利用“角角边”证明△ABD和△CAE全等,根据全等三角形对应边相等可得BD=AE,AD=CE,然后计算即可得解.
∵∠BAC=90°,
∴∠BAD+∠CAE=90°,
∵BD⊥AE,
∴∠ABD+∠BAD=90°,
∴∠ABD=∠CAE,
在△ABD和△CAE中,
∠ABD=∠CAE
∠ADB=∠CEA
AB=AC,
∴△ABD≌△CAE(AAS),
∴BD=AE,AD=CE,
∵AE=AD+DE=CE+DE=2+4=6cm,
∴BD=6cm.
故答案为:6cm.
点评:
本题考点: 全等三角形的判定与性质.
考点点评: 本题考查了全等三角形的判定与性质,利用同角的余角相等求出三角形全等的条件是解题的关键,也是本题的难点.