数列{an}的通项an=q^n(q>=2),且满足:存在正整数k,使得a(k+2)-(a(k+1)+ak)为数列{an}
1个回答
a(k+2)-(a(k+1)+ak)=q^(k+2)-(q^(k+1)+q^k)=q^k(q^2-q-1),
所以q^2-q-1应该也是q^i(i>=0)的形式.
而q>=2,所以1=
相关问题
若数列{an}满足条件:存在正整数k,使得an+k+an-k=2an对一切n∈N*,n>k都成立,则称数列{an}为k级
数列{an}满足a1=1,_an=an−1an−1+2(n≥2),则使得ak>[1/2009]的最大正整数k为( )
(2012•江苏二模)已知各项均为正整数的数列{an}满足an<an+1,且存在正整数k(k>1),使得a1+a2+…+
已知数列{an}满足ak+a(n-k)=2,(k,n-k∈N*),则数列{an}的前n项和Sn=
若数列An:a1,a2,…,an(n>=2)满足|a(k+1)-ak|=1(k=1,2,…n-1),则称An为E数列.记
已知数列{an}共有2k项(整数k≥2),数列{an}的前n项的和为Sn,满足a1=2,an+1=(a-1)Sn+2(n
如果有穷数列a1、a2、a3、…、an(n为正整数)满足条件a1=an,a2=an-1,…,an=a1,即ak=an-k
(2014•松江区三模)若正项数列{an}满足条件:存在正整数k,使得an+kan=anan−k对一切n∈N*,n>k都
等比数列an满足a1=1,0<q<1/2,且对任意等比数k,ak-(a(k+1)+a(k+2))是该数列中的某一项 求q
已知数列{an}满足:an=logn+1(n+2)(n∈N*),定义使a1•a2•a3…ak为整数的数k(k∈N*)叫做