设:(y+z)/a^2=(z+x)/b^2=(x+y)/c^2,且xy+yz+zx=0,xyz≠0.求证:(a+b+c)
2个回答
设:(y+z)/a^2=(z+x)/b^2=(x+y)/c^2=t
可求x=t(b^2+c^2-a^2)/2 y= z=... 显然t不等于0代入
xy+yz+zx=0然后就化出来了
相关问题
设(y+z)/a^2=(z+x)/b^2=(x+y)/c^2,且xy+yz+zx=0,xyz≠0,求证:(a+b+c)(
y^2+yz+z^2=a^2,z^2+zx+x^2=b^2,x^2+xy+y^2=c^2,yz+zx+xy=0.证明:(
若实数xyz满足(x-2y+z)^2+4(x-y)(y-z)=0 A xy-yz=0 B xy+yz=0 C xy-xz
a/x*x-yz=b/y*y-zx=c/z*z-xy求证ax+by+cz=(x+y+z)*(a+b+c)
设x,y,z≥0,且x+y+z=1,求证:0≤xy+yz+xz-2xyz≤7/27
已知x+y+z=1,xy+yz+zx=xyz,求证:(1-x)(x+yz)=0 ,(1-y)(y+zx)=0,(1-z)
方程:1:xy+yz+zx=a; 2:x^4+y^4+z^4=b; 3:xyz=c.
分式题:xy=x+y,yz=2(y+z),zx=3(z+x),求xyz/(xy+yz+xz)
若x/(a+2b+c)=y/(a-c)=z/(a-2b+c),且a,b,c,x,y,z均不为0,求证a/(x+2y+z)
因式分解:x2y+y2z+z2x+xy2+yz2+zx2+3xyz