解题思路:(1)小灯泡正常发光时,其电压等于额定电压,金属杆MN两端的电压大小等于灯泡的额定电压.由
P=
U
2
R
求解.
(2)小灯泡保持正常发光时,导体杆应匀速下滑,重力与安培力相等,由平衡条件求出磁感应强度B.
(3)小灯泡正常发光时导体棒匀速运动,由E=BLv,及E=I0(R+r),又P=I02R,求解导体棒的运动速率v.
(1)电压大小即灯泡的额定电压,P=
U2
R,U=
PR;
(2)设小灯泡的额定电流为I0,有:P=I02R,得 I0=
P
R
由题意,在金属棒沿导轨竖直下落的某时刻,小灯泡保持正常发光,流经MN的电流为I=I0,此时金属棒MN所受重力与安培力相等,金属棒匀速下滑,下落速度达到最大值,有:
mg=BI0L,
可解得:B=[mg
I0L=
mg/L
R
P].
(3)设灯泡正常发光时,导体棒的速率为v,由电磁感应定律和欧姆定律得:E=BLv,E=I0(R+r)
可得:V=
mg(R+r)
B2L2=
(R+r)P
mgR
答:
(1)小灯泡正常发光时,金属杆MN两端的电压大小是
PR;
(2)磁感应强度的大小是
mg
L
R
P;
(3)小灯泡正常发光时导体棒的运动速率是
(R+r)P
mgR.
点评:
本题考点: 导体切割磁感线时的感应电动势;闭合电路的欧姆定律;电磁感应中的能量转化.
考点点评: 本题关键要抓住灯泡的亮度保持不变,说明电路中感应电流不变,再分析导体棒的运动情况.第3问也可以这样作答:由能量转化和守恒可得:重力的功率等于整个电路获得的电功率:mgV=PR(R+r),可得:V=P(R+r)mgR.