解对x∈(0,1),易知In(2-x^2)>In1=0,|x+2|-2>0.
设0<x1<x2<1.f(x1)/f(x2)=In(2-x1^2)/In(2-x2^2)|x2+2|-2/|x1+2|-2
因为0<x1<x2<1,所以x1^2<x2^2.|x2+2|-2>|x1+2|-2.
所以In(2-x1^2)/In(2-x2^2)>1,|x2+2|-2/|x1+2|-2>1.
从而f(x1)/f(x2)>1,可知f(x1)>f(x2).
即对0<x1<x2<1,有f(x1)>f(x2).
可知函数f(x)在区间(0,1)单调递减
单调性有时也可以相除来求证的
利用导数也行.对x∈(0,1),有F(x)=In(2-x^2)/x