根据均值不等式得
n/2 +2/(n+1)
=(n+1-1)/2 +2/(n+1)
=(n+1)/2 +2/(n+1)-1/2
≥2√[(n+1)/2 × 2/(n+1)]-1/2
=2√1-1/2
=2-1/2
=3/2
当且仅当=(n+1)/2 =2/(n+1)即n=1时,等号成立
即n/2 +2/(n+1)的最小值为3/2 此时n=1
根据均值不等式得
n/2 +2/(n+1)
=(n+1-1)/2 +2/(n+1)
=(n+1)/2 +2/(n+1)-1/2
≥2√[(n+1)/2 × 2/(n+1)]-1/2
=2√1-1/2
=2-1/2
=3/2
当且仅当=(n+1)/2 =2/(n+1)即n=1时,等号成立
即n/2 +2/(n+1)的最小值为3/2 此时n=1