高数,求这个定积分

1个回答

  • 先求不定积分:

    令x = asinθ,dx = acosθ dθ,√(a² - x²) = √(a² - a²sin²θ) = √(a²cos²θ) = acosθ

    ∫ x²√(a² - x²) dx

    = ∫ a²sin²θ • acosθ • acosθ dθ

    = a⁴∫ sin²θcos²θ dθ

    = a⁴∫ (1/2 • sin2θ)² dθ

    = (a⁴/4)(1/2)∫ (1 - cos4θ) dθ

    = (a⁴/8)(θ - 1/4 • sin4θ) + C

    = (a⁴/8)arcsin(x/a) - (a⁴/8)sinθcosθ(cos²θ - sin²θ) + C

    = (a⁴/8)arcsin(x/a) - (a⁴/8)(x/a)[√(a² - x²)/a][(a² - x²)/a² - x²/a²] + C

    = (a⁴/8)arcsin(x/a) + (x/8)(2x² - a²)√(a² - x²) + C

    代值进去:

    =a⁴π/16