(sin∠α - cos∠α)^2 >= 0
展开移项得:
(sin∠α)^2 + (cos∠α)^2 >= 2 * sin∠α * cos∠α
不等式两边同时加上(sin∠α)^2 + (cos∠α)^2 ,不等号不变,得:
2 * [(sin∠α)^2 + (cos∠α)^2 ] >= (sin∠α + cos∠α)^2
因为(sin∠α)^2 + (cos∠α)^2 = 1,所以不等式化为
(sin∠α + cos∠α)^2
(sin∠α - cos∠α)^2 >= 0
展开移项得:
(sin∠α)^2 + (cos∠α)^2 >= 2 * sin∠α * cos∠α
不等式两边同时加上(sin∠α)^2 + (cos∠α)^2 ,不等号不变,得:
2 * [(sin∠α)^2 + (cos∠α)^2 ] >= (sin∠α + cos∠α)^2
因为(sin∠α)^2 + (cos∠α)^2 = 1,所以不等式化为
(sin∠α + cos∠α)^2