三次积分自己算
用投影法和截面法分别计算求三重积分I=∫∫∫z^2dxdydz,Ω为三个坐标平面及平面x+y+z=1,及x+y+z=2所
1个回答
相关问题
-
计算三重积分∫∫∫2dxdydz,(Ω在∫∫∫下方),其中Ω为三个坐标及平面x+y+z=1所围
-
设Ω由平面z=1及z=x^2+y^2围成,计算三重积分∫∫∫zdxdydz
-
计算三重积分∫∫∫xdxdydz,其中Ω为三个坐标面及平面x+2y+z=1所围成的闭区域
-
一道三重积分高数题∫∫∫(1+x+y+z)ˆ-3 dxdydz ,Ω 为平面 x=0,y=0,z=0,x+y+
-
用二重积分计算由抛物面z=x^2+y^2及坐标平面和平面x+y=1所围成立体的体积
-
计算三重积分(x+y+z)dxdydz
-
【三重积分】∫∫∫=√(x^2+y^2)dv,其中Ω是曲面z=x^2+y^2,和平面z=1所围的立体.
-
求三重积分∫∫∫x^2dxdydz D{(x,y,z) | x^2+y^2+z^2≤4,x^2+y^2+z^2≤4x}
-
用柱面坐标计算三重积分(Ω)∫∫∫xyzdy,其中Ω是柱面x^2+y^2=1与平面z=0与z=3所围成的面积
-
求∫∫∫[1/(x^2+y^2+1)]dxdydz,其中D由锥面x^2+y^2=z^2及平面z=1所围成的闭区域.