证明:设
AB =a,
AD =b,
A A 1 =c,则
EG =
E D 1 +
D 1 G =
1
2 (a+b),
AC =a+b=2
EG ,
∴
EG ∥
AC ,
EF =
E D 1 +
D 1 F =
1
2 b-
1
2 c=
1
2 (b-c),
B 1 C =
B 1 C 1 +
C 1 C =b-c=2
EF ,
∴
EF ∥
B 1 C .
又∵EG与EF相交,AC与B 1C相交,
∴平面EFG ∥ 平面AB 1C.
1年前
4
证明:设
AB =a,
AD =b,
A A 1 =c,则
EG =
E D 1 +
D 1 G =
1
2 (a+b),
AC =a+b=2
EG ,
∴
EG ∥
AC ,
EF =
E D 1 +
D 1 F =
1
2 b-
1
2 c=
1
2 (b-c),
B 1 C =
B 1 C 1 +
C 1 C =b-c=2
EF ,
∴
EF ∥
B 1 C .
又∵EG与EF相交,AC与B 1C相交,
∴平面EFG ∥ 平面AB 1C.
1年前
4