CDF=15°,
详解如下:由(2),得GM=AM,GK=CK,
∵MK^2+CK^2=AM^2,
∴MK^2+GK^2=GM^2,
∴∠GKM=90°,
又∵点C关于FD的对称点G,
∴∠CKG=90°,∠FKC=1/2∠CKG=45°,
又有(1),得∠A=∠ACD=30°,
∴∠FKC=∠CDF+∠ACD,
∴∠CDF=∠FKC-∠ACD=15°,
在Rt△GKM中,∠MGK=∠DGK+∠MGD=∠A+∠ACD=60°,
∴∠GMK=30°,
∴ MK/GM= (√3)/2,
∴ MK/AM= (√3)/2.