证明:∵AB=AC;AD⊥BC.
∴CD=BC/2.
∵∠CDE=∠DAE(均为角ADE的余角);∠DEC=∠AED=90º.
∴⊿DEC∽⊿AED,CD/DA=CE/DE;
又CD=BC/2;DM=DE/2.
则(BC/2)/DA=CE/(2DM),BC/DA=CE/DM,BC/CE=DA/DM;
∵∠C=∠ADM(均为∠CDE的余角).
∴⊿BCE∽⊿ADM.(两边对应成比例且夹角相等的两个三角形相似)
故:∠EBC=∠DAM.
证明:∵AB=AC;AD⊥BC.
∴CD=BC/2.
∵∠CDE=∠DAE(均为角ADE的余角);∠DEC=∠AED=90º.
∴⊿DEC∽⊿AED,CD/DA=CE/DE;
又CD=BC/2;DM=DE/2.
则(BC/2)/DA=CE/(2DM),BC/DA=CE/DM,BC/CE=DA/DM;
∵∠C=∠ADM(均为∠CDE的余角).
∴⊿BCE∽⊿ADM.(两边对应成比例且夹角相等的两个三角形相似)
故:∠EBC=∠DAM.