令m=n 那么f(1)=f(m)-f(m)=0
∴
f(1/4)=f(1)-f(4)=-f(4)=-1
1-(-1) =f(4)-f(1/4)=f(16)
∴f(x+6)-f(1/x)<2
等价于
f(x+6)-f(1/x)<f(16)
f(x+6)-f(1/x)=f(x²+6x)
令m=n 那么f(1)=f(m)-f(m)=0
∴
f(1/4)=f(1)-f(4)=-f(4)=-1
1-(-1) =f(4)-f(1/4)=f(16)
∴f(x+6)-f(1/x)<2
等价于
f(x+6)-f(1/x)<f(16)
f(x+6)-f(1/x)=f(x²+6x)