arccos((1-x^2)/(1+x^2)) 求导用复合函数的求导法则,是-1/√[1-(((1-x^2)/(1+x^2))^2]×((1-x^2)/(1+x^2))'=-(1+x^2)/2x×(-4x)/(1+x^2)^2=2/(1+x^2).
后面-2arctanx是导数-2/(1+x^2),所以f'(x)=0.
arccos((1-x^2)/(1+x^2)) 求导用复合函数的求导法则,是-1/√[1-(((1-x^2)/(1+x^2))^2]×((1-x^2)/(1+x^2))'=-(1+x^2)/2x×(-4x)/(1+x^2)^2=2/(1+x^2).
后面-2arctanx是导数-2/(1+x^2),所以f'(x)=0.