在三角形ABC中a,b,c分别为A、B、C所对的边,角C小于90度大于60度,且b/(a-b)=sin2C/(sinA-

2个回答

  • (1)由题意知:sinA≠0,2C≠B(否则B+C>π,自己试证一下).

    因为sin2C/(sinA-sin2C)=b/(a-b)=sinB/(sinA-sinB)

    所以sin2C*(sinA-sinB)=sinB*(sinA-sin2C),整理并化简得:

    sin2C=sinB,则有2C+B=π.而A+C+B=π,所以A=C,a=c.

    因此△ABC是等腰三角形.

    (2)由(1)中的a=c及平行四边形法则(自己画出图来)可知:sinA=1/c.

    所以AB*向量BC

    =|向量AB|*|向量BC|*cos(π-B)

    =-c*a*cosB

    =-c^2*cos(π-2C)

    =(1/sinA)^2*cos2C

    =cos2C/(sinA)^2

    =cos2C/(sinC)^2

    =cos2C/[(1-cos2C)/2]

    =2cos2C/(1-cos2C)

    =(2cos2C-2+2)/(1-cos2C)

    =(2cos2C-2)/(1-cos2C)+2/(1-cos2C)

    =-2+2/(1-cos2C)

    因为π/3