解函数f(x)=sinx-根号3cosx
=2(1/2sinx-√3/2cosx)
=2sin(x-π/3)
又由x属于[0,2π)
则x-π/3属于[-π/3,5π/3)
故当x-π/3=π/2,即x=5π/6,
函数f(x)=2sin(x-π/3)有最大值2.
此时x=5π/6.
解函数f(x)=sinx-根号3cosx
=2(1/2sinx-√3/2cosx)
=2sin(x-π/3)
又由x属于[0,2π)
则x-π/3属于[-π/3,5π/3)
故当x-π/3=π/2,即x=5π/6,
函数f(x)=2sin(x-π/3)有最大值2.
此时x=5π/6.