解题思路:由题设条件,先求出角B,再由余弦定理求出AC,然后利用正弦定理求出∴△ABC外接圆半径,由此能求出△ABC外接圆面积.
∵△ABC中,内角A,B,C依次成等差数列,
∴A+C=2B,
∴A+B+C=3B=180°,解得B=60°,
∵AB=8,BC=5,
∴AC2=82+52-2×8×5×cos60°=49,
∴AC=7,
∴△ABC外接圆半径R=[1/2×
7
sin60°]=
7
3
3,
∴△ABC外接圆面积S=π•(
7
3
3)2=[49π/3].
故选:A.
点评:
本题考点: 等差数列的性质.
考点点评: 本题考查三角形外接圆面积的求法,是中档题,解题时要注意等差数列、正弦定理、余弦定理等知识点的合理运用.