x^2fx-2f(x^3)/x^3=f(x)/x-2f(x^3)/x^3=f'(0)-2f'(0)=0
设函数fx在x=0处可导 且f(0)=0 则lim x趋向于0 x^2fx-2f(x^3)/x^3=
1个回答
相关问题
-
设函数f(x)在x=0处可导,且f(0)=0,则lim(△x→0)[f(5x)]/x=?
-
设函数y=f(X)在点x0处可导,且f'(X0)=a,则lim(△x->0)(f(x0-2△x)-f(X0))/△x)=
-
设函数f(x)在x=x0处可导,则lim(h>0)[f(x0)-f(x0-2h)]/h
-
设函数f(x)在点0可导,且f(0)=0,则lim(x→0)[f(x)/x]=
-
设lim[1-cos3x]f(x)/x2sin2x,其中f(x)在x=0处可导,f(0)=0,则f'(0)=
-
f(x)在x=0处可导,且f(0)=0,则lim[f(x)/2x]=?x趋于0
-
设fx在x=0处连续,且limf(x)/x存在,证明f(x)在x=0处可导
-
设f(x)可导,且f`(0)=0,lim(f`(x)/x)=2,则f(0)
-
设f(x) 是可导函数且f(0)=0 ,则lim(x->0)f(x)/x =
-
设f(x)是可导函数,且lim△x→0f(x0)−f(x0+△x)2△x=2,f′(x0)=( )