sin²x/cos²x+cos²x/sin²x=m
[(sinx)^4+cosx)^4]/sin²xcos²x=m
[(sin²x+cosx²x)²-2sin²xcos²x]/sin²xcos²x=m
(1-2sin²xcos²x)/sin²xcos²x=m
(1/sin²xcos²x)-2=m
sin²xcos²x=1/(m+2)
4sin²xcos²x=4/(m+2)
sin²2x=4/(m+2)
cos4x=1-2sin²2x=1-8/(m+2)=(m-6)/(m+2)
所以原式=[3+(m-6)/(m+2)]/[1-(m-6)/(m+2)]
=m/2