原式是偶函数
所以
原式=2∫(0,+∞)(x²+1)/(x^4+1)dx
=2∫(0,+∞)(1+1/x²)/(x²+1/x²)dx
=2∫(0,+∞)1/(x²+1/x²) d(x-1/x)
=2∫(0,+∞)1/(x²+1/x²-2+2) d(x-1/x)
=2∫(0,+∞)1/[(x-1/x)²+2] d(x-1/x)
=2/√2 arctan(x-1/x)/√2 |(0,+∞)
=√2 (π/2-(-π/2))
=√2 π
原式是偶函数
所以
原式=2∫(0,+∞)(x²+1)/(x^4+1)dx
=2∫(0,+∞)(1+1/x²)/(x²+1/x²)dx
=2∫(0,+∞)1/(x²+1/x²) d(x-1/x)
=2∫(0,+∞)1/(x²+1/x²-2+2) d(x-1/x)
=2∫(0,+∞)1/[(x-1/x)²+2] d(x-1/x)
=2/√2 arctan(x-1/x)/√2 |(0,+∞)
=√2 (π/2-(-π/2))
=√2 π