f'(x)=2x-2-a/(x-1)=[2(x-1)²-a]/(x-1)
(1)若a≤0,由于x-1>0,所以f'(x)=[2(x-1)²-a]/(x-1)>0,f(x)是增函数,
增区间为(1,+∞)
(2)若a>0,令f'(x)>0,得2(x-1)²-a>0,(x-1)²>a/2,x>√(2a) /2+1,
从而f(x)在[√(2a) /2+ 1,+∞)上是增函数;同理,在(1,√(2a) /2+1]上是减函数.
f'(x)=2x-2-a/(x-1)=[2(x-1)²-a]/(x-1)
(1)若a≤0,由于x-1>0,所以f'(x)=[2(x-1)²-a]/(x-1)>0,f(x)是增函数,
增区间为(1,+∞)
(2)若a>0,令f'(x)>0,得2(x-1)²-a>0,(x-1)²>a/2,x>√(2a) /2+1,
从而f(x)在[√(2a) /2+ 1,+∞)上是增函数;同理,在(1,√(2a) /2+1]上是减函数.