(1)设数列{a n}的公差为d,则
∵S 3=9,且a 5是a 3和a 8的等比中项,
∴
3 a 1 +3d=9
( a 1 +4d ) 2 =( a 1 +2d)( a 1 +7d)
∵d≠0,∴d=1
∴a 1=2
∴a n=n+1;
(2)证明:∵
1
a n a n+1 =
1
(n+1)(n+2) =
1
n+1 -
1
n+2
∴T n=
1
2 -
1
3 +
1
3 -
1
4 +…+
1
n+1 -
1
n+2 =
1
2 -
1
n+2 =
n
2(n+2)
∵T n≤λa n+1对任意的n∈N *恒成立,
∴
n
2(n+2) ≤λ(n+2) 对任意的n∈N *恒成立,
∵
n
2(n+2 ) 2 =
1
2(n+
4
n +4) ≤
1
2×(4+4) =
1
16
∴ λ≥
1
16 .