解题思路:(1)作BE⊥AD于E,就可以得出BE=CD,在Rt△ABE中由勾股定理就可以求出AE,由BC=DE就可以表示出AD而得出结论;
(2)由(1)的结论根据梯形的面积公式求出x的值,建立不等式求出x的取值范围就可以得出结论.
(1)作BE⊥AD于E,
∴∠AEB=∠DEB=90°.
∵CD⊥AD,
∴∠ADC=90°.
∵BC∥AD,
∴∠EBC=90°,
∴四边形BCDE是矩形,
∴BE=CD,BC=DE.
∵AB:CD=5:4,AB的长为5x米,
∴CD=4x米,
∴BE=4x,
在Rt△ABE中,由勾股定理,得
AE=3x.
∵BC=20-5x-4x=20-9x,
∴DE=20-9x,
∴AD=20-9x+3x=20-6x
(2)由题意,得
(20−6x+20−9x)4x
2=50①
20−9x+20−6x+4x+5x≤30②,
由①,得
x1=[5/3],x2=1,
由②,得
x≥[5/3],
∴x=[5/3],
AB=5×[5/3]=[25/3].
点评:
本题考点: 一元二次方程的应用;勾股定理的应用.
考点点评: 本题考查了勾股定理的运用,梯形的面积公式的运用,梯形的周长公式的运用,一元二次方程的解法的运用,一元一次不等式的运用,解答时根据条件建立方程及不等式是关键.