(1)
1
10×11 =
1
10 -
1
11 ;
(2)
1
n×(n+1) =
1
n -
1
n+1 ;
(3)
1
ab +
1
(a+2)(b+2) +
1
(a+4)(b+4) +…+
1
(a+100)(b+100) ,
=
1
1×3 +
1
(1+2)×(3+2) +
1
(1+4)×(3+4) +…+
1
(1+100)×(3+100) ,
=
1
1×3 +
1
3×5 +
1
5×7 +…+
1
101×103 ,
=
1
2 ×[(1-
1
3 )+(
1
3 -
1
5 )+(
1
5 -
1
7 )+…+(
1
101 -
1
103 )],
=
1
2 ×[1-
1
103 ],
=
1
2 ×
102
103 ,
=
51
103 ;
故答案为:
1
10×11 ,
1
10 -
1
11 ,
1
n×(n+1) ,
1
n -
1
n+1 .