(1)设a=lg(1+1/7),b=lg(1+1/7*7),用a,b表示lg2,lg7

5个回答

  • 第一题

    a=lg(1+1/7) = lg(8/7) = 3lg2 -lg7 (1)

    b=lg(1+1/7*7)= lg(50/7^2) = lg50 -2lg7 = lg5 +1 -2lg7 = lg10 -lg2+1-2lg7 =2-lg2-2lg7 (2)

    将lg2、lg7当作未知数,解(1)(2)式组成的方程组得

    lg2 = (2a-b+2)/7

    lg7 = (-a-3b+6)/7

    第二题

    因 3^a = 4^b =36

    取10为底的对数,则

    alg3=blg4=lg36

    所以

    1/a = lg3/lg36

    1/b = lg4/lg36

    2/a+1/b = 2lg3/lg36 + lg4/lg36 = (lg9+lg4)/lg36 = lg36/lg36 = 1