LZ你是那里人··我看着卷子好熟悉的感觉 和我做的一模一样啊
已知数列an满足a1=3/5,a(n+1)=3an/(2an+1),是否存在互不相等的正整数m,s,t,使m,s,t成等
1个回答
相关问题
-
已知数列{an}满足;a1=m(m为正整数)a(n+1)=an/2(an为偶数),a(n+1)=3an+1(an为奇数)
-
已知数列{an}满足a1=m,3(an+1)=2an+5n,其中m为实数,且m≠2/5,n为正整数.
-
数列{an}满足a1=1,an+1=(n-λ)/(n+1)an若存在正整数m当n>m时有an
-
已知数列{an}满足:a1=2,a2=3,2a(n+1)=3an-a(n-1) (n≥2).(1)求使不等式{(an-m
-
已知数列an=3/8(2/3)^n,是否存在正整数m,n,p(m<n<p),使am,an,ap成为等差数列?
-
数列{an}满足a1=3/2,an+1=an^2-an+1(n属于正整数),则m=1/a1+1/a2+……+1/a200
-
已知数列{an}满足an+1*an+an+1-2an=0(n属于N*)且a1=2/3,若存在一个常数入,使数列{(1/a
-
已知数列an满足a1=1,an+1=2an +1 (n是正整数)
-
a1=3/(2^m-1),m为正整数,a(n+1)=an-3(an>3),a(n+1)=2an(an
-
还是我理解错了.已知数列{an}满足a1=m(m为正整数),an+1=an/2(an为偶数)或an+1=3an+1(an