证明:(A+B+C)^2=3(A^2+B^2+C^2)
3A^2+3B^2+3C^2=A^2+B^2+C^2+2AB+2AC+2BC
2A^2+2B^2+2C^2-2AC-2AB-2BC=0
(A^2-2AC+C^2)+(A^2-2AB+B^2)+(B^2-2BC+C^2)=0
(A-C)^2+(A-B)^2+(B-C)^2=0
A-B=0,A-C=0,B-C=0
所以A=B=C
证明:(A+B+C)^2=3(A^2+B^2+C^2)
3A^2+3B^2+3C^2=A^2+B^2+C^2+2AB+2AC+2BC
2A^2+2B^2+2C^2-2AC-2AB-2BC=0
(A^2-2AC+C^2)+(A^2-2AB+B^2)+(B^2-2BC+C^2)=0
(A-C)^2+(A-B)^2+(B-C)^2=0
A-B=0,A-C=0,B-C=0
所以A=B=C