首项为a1,且1,an,Sn成等差数列
2an=1+sn
2a(n-1)=1+s(n-1)
相减得
2[an-a(n-1)]=an
an/a(n-1)=2
an=2^(n-1)
2)设Tn为数列1/an的前n项和
Tn=1/2^0+2/2^1+3/2^2+...+n/2^(n-1)
Tn/2=1/2^1+2/2^2+3/2^3+...+n/2^n
Tn-Tn/2
=1/2^0+1/2^1+1/2^2+...+1/2^(n-1)-n/2^n
=[1-(1/2)^n]/(1-1/2)-n/2^n
=2*[1-(1/2)^n]-n/2^n
Tn=4*[1-(1/2)^n]-2n/2^n
=4-4/2^n-2n/2^n
=4-(4+2n)/2^n
1==3
m>=7
m的最小值:7