利用性质f(xy)=f(x)+f(y)
f(x)+f(x-2)=f[x*(x-2)]>2
又f(3*3)=f(3)+f(3)=2
即f(x)+f(x-2)=f[x*(x-2)]>f(9)
f(x)是定义在R上的增函数
所以
x(x-2)>9
x*x-2x-9>0
解方程得到解为
x>1+√10 或者x
利用性质f(xy)=f(x)+f(y)
f(x)+f(x-2)=f[x*(x-2)]>2
又f(3*3)=f(3)+f(3)=2
即f(x)+f(x-2)=f[x*(x-2)]>f(9)
f(x)是定义在R上的增函数
所以
x(x-2)>9
x*x-2x-9>0
解方程得到解为
x>1+√10 或者x