如图,△ABC中,E、D是BC边上的三等分点,F是AC的中点,BF交AD、AE于G,H,试求BG:GH:HF.

1个回答

  • 过F作FN ∥ BC,交AE于M,AD于N,

    ∵F为AC中点,

    ∴FM是△AEC中位线,

    ∴MF=

    1

    2 CE,CE=2FM,

    ∵BD=DE=CE,

    ∴BE=2CE=4FM,

    ∵FM ∥ BC,

    ∴△FMH ∽ △BEH,

    FH

    BH =

    FM

    BE =

    1

    4 ,

    ∵FN是△ADC的中位线,

    ∴FN=

    1

    2 CD=CE=BD,

    ∵FN ∥ BC,

    ∴△FNG ∽ △BDG,

    BG

    GF =

    BD

    FN =

    1

    1 ,

    ∴BG=GF,

    FH

    BH =

    1

    4 ,

    FH

    BF =

    1

    5 ,

    ∴FH=

    1

    5 BF,

    ∵BG=

    1

    2 BF,HF=

    1

    5 BF,

    ∴GH=GF-HF=

    1

    2 BF-

    1

    5 BF=

    3

    10 BF,

    ∴BG:GH:HF=(

    1

    2 BF):(

    3

    10 BF):(

    1

    5 BF)=5:3:2.

    1年前

    5