sin(α+π/2)=cosa=-√5/5 所以α∈(π/2,π).sina=2√5/5
[cos2(π/4+α/2)-cos2(π/4-α/2)]/[sin(π-α)+cos(3π+α)]
=[(1+cos(π/2+α))/2-(1+cos(π/2-α))/2]/[sina-cosa]
=-sina/(sina-cosa)
=(-2√5/5)/(2√5/5+√5/5)
=-2/3
sin(α+π/2)=cosa=-√5/5 所以α∈(π/2,π).sina=2√5/5
[cos2(π/4+α/2)-cos2(π/4-α/2)]/[sin(π-α)+cos(3π+α)]
=[(1+cos(π/2+α))/2-(1+cos(π/2-α))/2]/[sina-cosa]
=-sina/(sina-cosa)
=(-2√5/5)/(2√5/5+√5/5)
=-2/3