1/(1*3) + 1/(3*5) + 1/(5*7) + .+ 1/(97*99) + 1/(99*101) = (1-1/3)/2 + (1/3 - 1/5)/2 + (1/5-1/7)/2 + .+ (1/97-1/99)/2 + (1/99-1/101)/2 = [(1-1/3) + (1/3 - 1/5) + (1/5-1/7) + .+ (1/97-1/99) + (1/99-1/101)] / 2 = [(1+1/3+1/5+.+1/97+1/99) - (1/3+1/5+1/7+.+1/99+1/101)] / 2 = [ 1 - 1/101] / 2 = [100/101] / 2 = 50/101
1/(1*3)+1/(3*5)+1/(5*7)+...+1/(97*99)+1/(99*101)谁帮忙解一下!
1个回答
相关问题
-
1/1*3+1/3*5+1/5*7+……+1/97*99+1/99*101
-
1*3/1+3*5/1+5*7/1+7*9/1+.+97*99/1+99*101/1要计算过程,得数
-
1x3/1+3x5/1+5x7/1+.+97x99/1+99x101/1
-
1+3+5+7+.95+97+99+100+101=()²
-
2/1*3+2/3*5+2/5*7……+2/97*99+2/99*101
-
2/1*3+2/3*5+2/5*7+.+2/97*99=2/99*101
-
1*3分之1+3*5分之1+5*7分之1+…+97*99分之1+99*101分之1=?
-
1/3+1/3*5+1/5*7.1/99*101
-
1/1*3+1/3*5+1/5*7+...1/97*99
-
1/1*3 + 1/3*5 + 1/5*7 + …… + 1/97*99