Sk=ak×a(k+1)/2
Sk-1=ak×a(k-1)/2
ak=Sk-Sk-1=ak[a(k+1)-a(k-1)]/2
a1=1≠0,又ak=ak[a(k+1)-a(k-1)]/2对于任意正整数k均成立,因此ak≠0
等式两边同除以ak
[a(k+1)-a(k-1)]/2=1
a(k+1)=a(k-1)+2
a3=a1+2=1+2=3
S2=a1+a2=(a2a3)/2
1+a2=3a2/2 a2=2
an=n
数列{an}的通项公式为an=n.
(an)^(-a)
Sk=ak×a(k+1)/2
Sk-1=ak×a(k-1)/2
ak=Sk-Sk-1=ak[a(k+1)-a(k-1)]/2
a1=1≠0,又ak=ak[a(k+1)-a(k-1)]/2对于任意正整数k均成立,因此ak≠0
等式两边同除以ak
[a(k+1)-a(k-1)]/2=1
a(k+1)=a(k-1)+2
a3=a1+2=1+2=3
S2=a1+a2=(a2a3)/2
1+a2=3a2/2 a2=2
an=n
数列{an}的通项公式为an=n.
(an)^(-a)