1/a+1/b+1/c>√a+√b+√c
(abc)/a+(abc)/b+(abc)/c>√a(abc)+√b(abc)+√c(abc)
ab+bc+ca>a√bc+b√ca+c√ab
2(ab+bc+ca)-2(a√bc+b√ca+c√ab)>0
(ab+bc-2a√bc)+(bc+ca-2b√ca)+(ca+ab-2c√ab)>0
(√ab-√bc)^2+(√bc-√ca)^2+(√ca-√ab)^2>0
a,b,c为互不相等的正数,所以不等式成立.
得证
1/a+1/b+1/c>√a+√b+√c
(abc)/a+(abc)/b+(abc)/c>√a(abc)+√b(abc)+√c(abc)
ab+bc+ca>a√bc+b√ca+c√ab
2(ab+bc+ca)-2(a√bc+b√ca+c√ab)>0
(ab+bc-2a√bc)+(bc+ca-2b√ca)+(ca+ab-2c√ab)>0
(√ab-√bc)^2+(√bc-√ca)^2+(√ca-√ab)^2>0
a,b,c为互不相等的正数,所以不等式成立.
得证