1.三角形ABC中,sinA^2+sinB^2=6sinC^2,则(1/tanA+1/tanB)tanC=?

1个回答

  • 1.

    (1/tanB+1/tanA)*tanC

    =tanC*(tanB+tanA)/(tanBtanA)

    =tanC*(sinBcosA+sinAcosB)/(sinBsinA)

    [分子分母同时乘以cosBcosA]

    =sinC*sin(B+A)/(sinBsinAcosC)

    =(sinC)^2/(sinBsinAcosC) [B+C=180度-A]

    所以

    (1/tanB+1/tanA)*tanC

    =c^2/(ab*cosC)[由正弦定理可得].1式

    6sinC^2=sinB^2+sinA^2可由正弦定理推出,6C^2=b^2+a^2 .2式

    再根据余弦定理,

    c^2=b^2+a^2-2ab*cosC .3式

    将2式代入3式,

    得5c^2=2ab*cosC

    c^2=2/5ab*cosC .4式

    最后将4式代入1式,

    (1/tanB+1/tanA)*tanC

    =c^2/(ab*cosC)

    =(2/5ab*cosC)/(ab*cosC)

    =2/5

    2.

    sinα+cosα=a

    sinα*cosα=a

    (sinα+cosα)^2=a^2

    sin^2α+2sinα*cosα+cos^2α=a^2

    1+2a=a^2

    a^2-2a-1=0

    a^2-2a+1-1-1=0

    (a-1)^2-2=0

    (a-1-√2)(a-1+√2)=0

    a=1-√2 或 a=1+√2(舍去,)

    所以:a=1-√2

    sinα^3+cosα^3

    =(sinα+cosα)(sin^2α-sinα*cosα+cos^2α)

    =(sinα+cosα)(1-sinα*cosα)

    =a(1-a)

    =a-a^2

    =1-√2-(1-√2)^2

    =1-√2-3+2√2

    =√2-2