1、已知成等差数列的四个数,四个数之和为26,第二个数与第三个数之积为40,求这个等差数列.

1个回答

  • 设成等差数列的四个数分别为

    a1、a2、a3、a4,公差为d.

    ∵四个数之和为26

    ∴4(a1 + a4)/2 = 26

    ∴a1 + a4 = 13

    即 a1 + (a1 + 3d) = 13

    亦即 (a1 + d) + (a1 + 2d) = 13

    ∴ a2 + a3 = 13 ---------------------- ①

    注:在等差数列中,可直接利用 a2 + a3 = a1 + a4 = 13

    ∵第二个数与第三个数之积为40

    ∴a2 × a3 = 40 ---------------------- ②

    由①②知:a2 和 a3 是方程 X² - 13X + 40 = 0 的两个实根

    ∴a2 = 5,a3 = 8 或 a2 = 8,a3 = 5

    当 a2 = 5,a3 = 8 时,d = a3 - a2 = 3

    此时a1 = a2 - d = 5 - 3 = 2,a4 = a3 + d = 8 + 3 = 11

    ∴ 这个等差数列为:2,5,8,11.

    当 a2 = 8,a3 = 5 时,d = a3 - a2 = - 3

    此时a1 = a2 - d = 8 - (- 3) = 11,a4 = a3 + d = 5 + (- 3) = 2

    ∴ 这个等差数列为:11,8,5,2.

    综上,该等差数列为2,5,8,11 或 11,8,5,2.

    ∵ a(n) = 2 - 1 / [a(n-1)]

    ∴ a(n) - 1 = 1 - 1 / [a(n-1)]

    ∴ a(n) - 1 = [a(n-1) - 1] / [a(n-1)]

    上式两边取倒数

    ∴ 1 / [a(n) -1] = [a(n-1)] / [a(n-1) -1]

    ∴ 1 / [a(n) -1] = { [a(n-1) - 1] + 1} / [a(n-1) -1]

    ∴ 1 / [a(n) -1] = 1 + 1 / [a(n-1) -1]

    即 b(n) = 1 + b(n-1)

    ∴ b(n) - b(n-1) = 1

    ∴ 数列{bn}是以1为公差的等差数列.

    ∵a(n) = 2 - {1 / [a(n-1)] }

    ∵a(n+1) = 2 - [1 / a(n)]

    ∴a(n+1) - 1 = 1 - [1 / a(n)] = [a(n) -1] / [a(n)]

    上式两边取倒数

    ∴ 1 / [a(n+1) -1] = [a(n)] / [a(n) -1] = {[a(n) - 1] + 1} / [a(n) -1] = 1 + {1/[a(n) -1]}

    ∴ 1 / [a(n+1) -1] - {1/[a(n) -1]} = 1

    ∴ 数列{1/[a(n) -1]}是首项为(-5/2)、公差为1的等差数列.

    ∴1/[a(n) -1] = (-5/2) + (n - 1) × 1 = n - (7/2) = (2n - 7)/2

    ∴a(n) - 1 = 2/(2n - 7)

    ∴a(n) = (2n - 5) / (2n - 7)

    ∵△ABC中,∠A、∠B、∠C成等差数列

    ∴A + C = 2B

    而A + C = 180° - B

    ∴B = 60°

    ∴A + C = 120°

    ∴A = 120° - C

    ∴A - C = 120° - 2C

    而 0° ≤ (120° - 2C) < 120°

    ∴ 0 ≤ sin(120° - 2C) ≤ 1

    cos²A + cos²C

    = (1 + cos2A)/2 + (1 + cos2C)/2

    = (2 + cos2A + cos2C)/2

    = 1 + (cos2A + cos2C)/2

    = 1 + [2cos(A + C) sin(A - C)]/2

    = 1 + cos(A + C) sin(A - C)

    = 1 - cosBsin(A - C)

    = 1 - cos60° × sin(A - C)

    = 1 - (1/2) × sin(A - C)

    = 1 - (1/2) × sin(120° - 2C)

    而 0 ≤ sin(120° - 2C) ≤ 1 (已证)

    ∴ 1 - (1/2) × sin(120° - 2C) ∈ [1/2,1]

    ∴ cos²A+cos²C取值范围是 [1/2,1].