令g(x)=f(x)/e^x
则:g'(x)=[e^xf'(x)-e^xf(x)]/e^2x=[f'(x)-f(x)]/e^x
因为f'(x)≦f(x)
所以,g'(x)≦0
所以,g(x)在R上递减
g(1)≦g(0)
即:f(1)/e≦f(0)
即:f(1)≦ef(0)
所以,f(1)/f(0)≦e
所以,f(1)/f(0)的最大值为e
令g(x)=f(x)/e^x
则:g'(x)=[e^xf'(x)-e^xf(x)]/e^2x=[f'(x)-f(x)]/e^x
因为f'(x)≦f(x)
所以,g'(x)≦0
所以,g(x)在R上递减
g(1)≦g(0)
即:f(1)/e≦f(0)
即:f(1)≦ef(0)
所以,f(1)/f(0)≦e
所以,f(1)/f(0)的最大值为e