证明:
∵∠ABC=90,M为EC的中点
∴BM=EM=EC/2 (直角三角形中线特性)
∴∠MBE=∠MEB
∴∠BME=180-2∠BEM
∵∠ADE=90,AD=ED
∴∠AED=45,∠EDC=90
∴DM=EM=EC/2
∴∠MED=∠MDE,BM=DM
∴∠DME=180-2∠MED
∴∠BMD=∠BME+∠DME
=180-2∠BEM+180-2∠DEM
=360-2(∠BEM+∠DEM)
=360-2∠BED
=360-2(180-∠AED)
=360-2(180-45)
=90°
∴等腰直角△BMD