解析:∵{an}是等比数列,令首项=a1,公比=q∴an=a1*q^(n-1),an>0,n∈N+
∵log[an]-log[a(n-1)]
=log[a1*q^(n-1)]-log[a1*q^(n-2)]
=log{[a1*q^(n-1)]/[a1*q^(n-2)]}
=logq=定值
∴{logan}是首项loga1,公差=logq的等差数列
∵√an/√a(n-1)=√an/a(n-1)=√q=定值
∴{√an}是首项=√a1,公比=√q的等比数列
解析:∵{an}是等比数列,令首项=a1,公比=q∴an=a1*q^(n-1),an>0,n∈N+
∵log[an]-log[a(n-1)]
=log[a1*q^(n-1)]-log[a1*q^(n-2)]
=log{[a1*q^(n-1)]/[a1*q^(n-2)]}
=logq=定值
∴{logan}是首项loga1,公差=logq的等差数列
∵√an/√a(n-1)=√an/a(n-1)=√q=定值
∴{√an}是首项=√a1,公比=√q的等比数列