设x^6-x^5-17x^4+5x^3+64x^2-4x-48=(x+a)(x+b)(x+c)(x+d)(x+e)(x+
1个回答
-1
x的5次幂系数可以推出来.
(x+a)(x+b)(x+c)(x+d)(x+e)(x+f)=x^6 +(a+b+c+d+e+f)x^5+.
相关问题
1、设x^6-x^5-17x^4+5x#+64x^2-4x^2-48=(a+x)(b+x)(c+x)(d+x)(e+x)
若x^5-3x^4+7x^3-6x^2+2x+9=(x-a)(x-b)(x-c)(x-d)(x-e)则ab+ac+ad+
a=3x³-2x³-x+5 b=-7x³-6x+9 c=5x²-6x+4 求解a
5/(1x2x3x4)+7/(2x3x4x5)+9/(3x4x5x6)+...+37/(17x18x19x20)
3x·x-5x-122x·x·x-x·x-4x+3x·x·x-6x-5x·x+6x+64x·x+12x+7
4X+3(24-X)=86 6X-48+4.5X=27 5X-6=4(X+2)+4 22×4+(x-22)×2=3x+2
设函数f(x)=|x^2-4x-5|,设集合A={x|f(x)≥5},B=(-∞,-2]∪[0,4]∪(6,+∞],
(1/3)6-6x=24,4x+5=3x+3-2x,3-(5x+7)/2=(x+17)/4,(3x-1)/3=(x+2)
3x-10/x-3 +4x-5/x-1=6x-17/2x-5 +8x-14/2x-3
a=x2-2x2+x-4 b=2x3+5x-4 c=-4x2+x-1,2a-(b+c)=?