n=1成立,
n=k 成立,
则n=k+1时
左边=(n+2)(n+3)……(n+n)(n+n+1)(n+1+n+1)=
=2^n*1*3*……*(2n-1)(n+n+1)(n+1+n+1)/(n+1)=
=2^n*1*3*……*(2n-1)(2n+1)*2=
=2^(n+1)*1*3*……*(2n-1)(2n+1)=右边
证毕
n=1成立,
n=k 成立,
则n=k+1时
左边=(n+2)(n+3)……(n+n)(n+n+1)(n+1+n+1)=
=2^n*1*3*……*(2n-1)(n+n+1)(n+1+n+1)/(n+1)=
=2^n*1*3*……*(2n-1)(2n+1)*2=
=2^(n+1)*1*3*……*(2n-1)(2n+1)=右边
证毕